3.НЕЙРОННЫЕ СЕТИ ОСНОВАННЫЕ НА МЕТОДЕ ОБРАТНОГО ФУНКЦИОНИРОВАНИЯ

  В данной главе мы приводим детальное описание метода обратного распространения -способа обучения многослойных НС. Подробно описана НС для распознавания рукописных цифр и процесс ее обучения. В главе также проведена современная оценка метода обратного распространения.

3.1. Обучение нейронных сетей

  Мы можем научить трехслойную сеть решать определенную задачу, пользуясь следующей процедурой. Сначала мы предъявляем сети серию тренировочных примеров, которые состоят из паттерна активностей входных элементов вместе с желаемым паттерном активностей выходных элементов. Предположим, что мы хотим научить сеть распознавать рукописные цифры. Можно воспользоваться матрицей, из 256 сенсоров, каждый из которых регистрирует присутствие или отсутствие чернильного пятнышка в пределах маленькой площадки - фрагмента одной цифры. Для сети, таким образом, потребуется 256 входных элементов (по одному на каждый сенсор), 10 выходных элементов (по одному на каждую возможную цифру) и некоторое количество скрытых элементов. Для каждой цифры, регистрируемой сенсорами, сеть должна генерировать высокую активность в соответствующем выходном элементе и низкую в остальных выходных элементах.

  Чтобы натренировать систему, мы предъявляем ей изображение цифры и сравниваем действительную активность на 10 выходных элементах с желаемой активностью. Затем мы подсчитываем ошибку, определяемую как квадрат разности между действительным и желаемым выходом. После этого мы изменяем вес каждой связи, с тем чтобы уменьшить ошибку. Описанный процесс тренировки мы повторяем со многими различными написаниями каждой цифры, пока сеть не научится правильно распознавать все возможные изображения.

  Чтобы реализовать эту процедуру, нам нужно изменять каждый вес на величину, пропорциональную скорости, с которой изменяется ошибка по мере изменения веса.

  Эта величина (называемая производной ошибки по весу и обозначаемая EW) вычисляется не просто.

  Один из способов вычисления EW заключается в том, чтобы изменить вес на очень маленькую величину и посмотреть, как изменится ошибка. Однако этот метод не эффективен, поскольку требует отдельных вариаций для каждого из многих весов.

3.2. Алгоритм обратного распространения

3.2.1. Идея создания алгоритма обратного распространения

  Примерно в 1974 году Поль Дж. Вербос изобрел значительно более эффективную процедуру для вычисления EW, когда работал над своей докторской диссертацией в Гарвардском университете. Процедура, известная теперь как алгоритм обратного распространением (back propagation algorithm), стала одним из наиболее важных инструментов в обучении нейронных сетей.

  Алгоритм обратного распространением проще всего понять, когда все элементы сети линейны. Алгоритм вычисляет каждую EW, сначала вычисляя EA-скорость, с которой изменяется ошибка при изменении уровня активности элемента. Для выходных элементов EA является просто разностью между действительным и желаемым выходом.

  Чтобы вычислить EA для скрытого элемента в слое, непосредственно предшествующем выходному слою, мы сначала идентифицируем все веса между этим скрытым элементом и выходными элементами, с которыми соединен данный скрытый элемент. Затем мы умножаем эти веса на величины EA для этих выходных элементов и складываем полученные произведения. Эта сумма и равна EA для данного скрытого элемента. Вычислив EA для всех элементов скрытого слоя, прилегающего к выходному, мы можем аналогичным образом рассчитать EA и для других слоев, перемещаясь в направлении, обратном тому направлению, в котором активность нейронов распространяется по сети. Отсюда и название алгоритма обратного прослеживания (или обратного распространения). После того как значение EA для элемента вычислено, подсчитать EW для каждой входной связи элемента уже несложно. Величина EW является произведением EA и активности во входной цепи. Для нелинейных элементов алгоритм обратного распространением включает дополнительный шаг. перед перемещением в обратном направлении EA необходимо преобразовать в EI - скорость, с которой изменяется ошибка по мере изменения суммарного входа элемента.

3.2.2. Описание НС и алгоритма обратного распространения

  Чтобы обучить нейронную сеть решению какой-либо задачи, мы должны подправлять веса каждого элемента таким образом, чтобы уменьшалась ошибка - расхождение между действительным и желаемым выходом. Для этого нужно, чтобы нейронная сеть вычисляла производную от ошибки по весам (EW). Другими словами, она должна вычислять, как изменяется ошибка при небольшом увеличении или уменьшении каждого веса. Чаще всего для вычисления EW применяется алгоритм обратного распространением.

  Чтобы реализовать этот алгоритм, мы сначала должны дать математическое описание нейронной сети. Предположим, что элемент j-типичный элемент выходного слоя, а элемент i - типичный элемент слоя, который предшествует выходному. Активность элемента выходного слоя определяется двухшаговой процедурой. Сначала вычисляется суммарный взвешенный вход Xj с помощью формулы

Xj=S(Yi * Wij), (3.1)

  где Yi -уровень активности i-го элемента в предшествующем слое и Wij - вес связи между i-м и j-м элементами.

  Далее, элемент вычисляет активность Yj с помощью некоторой функции от суммарного взвешенного входа. Обычно применяется сигма-функция:

Yj=1/(1 + e(-Xj)), (3.2)

  После того как активности всех выходных элементов определены, сеть вычисляет ошибку , которая определяется выражением

E=1/2 * S (Yj - Dj)2, (3.3)

j

  где Yj - уровень активности j-го элемента в верхнем слое, а Dj - желаемый выход j-го элемента.

  Алгоритм обратного распространением состоит из четырех шагов.

  1) Вычислить, насколько быстро меняется ошибка при изменении выходного элемента. Эта производная ошибки (EA) есть разность между действительной и ожидаемой активностью.


                           dE
                    EAj = ---- = Yj - Dj. (3.4)
                           dYj

  2) Вычислить, насколько быстро изменяется ошибка по мере изменения суммарного входа, получаемого выходным элементом. Эта величина (EI) есть результат шага 1, умноженный на скорость изменения выходного элемента с изменением его суммарного входа.


                  dE     dE   dYj
            EIj =     = --- * --- = EIj Yj (1 - Yj). (3.5)
                  dXj   dYj   dXj

  3) Вычислить, как быстро изменяется ошибка по мере изменения веса на входной связи выходного элемента. Эта величина (EW) есть результат шага 2, умноженный на уровень активности элемента, из которого исходит связь.


                    dE     dE    dXj
             EWij = ---- = --- * --- = EIj Yi. (3.6)
                    dWij   dXj   dXij

  4) Вычислить, как быстро изменяется ошибка с изменением активности элемента из предыдущего слоя. Этот ключевой шаг позволяет применять обратное распространение к многослойным сетям. Когда активность элемента из предыдущего слоя изменяется, это влияет на активности всех выходных элементов, с которыми он связан. Поэтому, чтобы подсчитать суммарное воздействие на ошибку, мы складываем все эти воздействия на выходные элементы.

  Но эти воздействия не трудно подсчитать. Этот результат шага 2, умноженный на вес связи к соответствующему выходному элементу.


                     dE       dE    dXj 
              EAi = ---- = S (--- * --- ) = S (EIj Wij). (3.7)
                    dYi    j  dXj   dYijj  

  Пользуясь шагами 2 и 4, мы можем преобразовать величины EA одного слоя элементов в EA предыдущего слоя. Эту процедуру можно повторять, чтобы вычислять EA стольких предыдущих слоев, сколько их есть. Зная EA для элемента, мы можем воспользоваться шагами 2 и 3, чтобы вычислить EW на его выходных связях.

3.2.3. Современная оценка алгоритма обратного распространения

  На протяжении нескольких лет после его изобретения алгоритм обратного распространением оставался почти незамеченным, вероятно, потому, что не был в должной мере оценен специалистами. В начале 80-х годов Д. Румельхарт, работавший в то время в Калифорнийском университете в Сан-Диего, и Д. Паркер из Станфордского университете независимо друг от друга вновь открыли алгоритм. В 1986 году Румельхарт, Р. Уильямс, также из Калифорнийского университета в Сан-Диего, и Джеффери Е. Хинтон продемонстрировали способность алгоритма обучить скрытые элементы вырабатывать интересные представления для сложных паттернов на входе и тем самым сделали его известным.

  Алгоритм обратного распространения оказался на удивление эффективным в обучении сетей со многими слоями решению широкого класса задач. Но более всего он эффективен в ситуациях, когда отношения между входом и выходом нелинейны, а количество обучающих данных велико. Применяя алгоритм, исследователи создали нейронные сети, способные распознавать рукописные цифры, предсказывать изменения валютного курса и оптимизировать химические процессы. Они даже воспользовались алгоритмом для обучения сетей, которые идентифицируют переродившиеся предраковые клетки в анализируемых образцах ткани и регулируют положение зеркал в телескопах, чтобы исключить атмосферные искажения.

  Р. Андерсен из Массачусетского технологического института и Д. Зипсер из Калифорнийского университета в Сан-Диего показали, что алгоритм обратного распространения представляет собой весьма эффективный инструмент для понимания функций некоторых нейронов в коре головного мозга. Они научили нейронную сеть реагировать на зрительные стимулы, применив алгоритм обратного распространения. Затем они обнаружили, что реакция скрытых элементов удивительно схожа с реакцией реальных нейронов, выполняющих преобразование зрительной информации, поступающей от сетчатки, в форму, необходимую для более глубоких областей мозга, перерабатывающих зрительную информацию.

На страницу назад На содержание На страницу вперед

Hosted by uCoz